On the Asymptotic Stability of a Class of Perturbed Ordinary Differential Equations with Weak Asymptotic Mean Reversion

نویسندگان

  • JOHN A. D. APPLEBY
  • JIAN CHENG
چکیده

In this paper we consider the global and local stability and instability of solutions of a scalar nonlinear differential equation with non–negative solutions. The differential equation is a perturbed version of a globally stable autonomous equation with unique zero equilibrium where the perturbation is additive and independent of the state. It is assumed that the restoring force is asymptotically negligible as the solution becomes large, and that the perturbation tends to zero as time becomes indefinitely large. It is shown that solutions are always locally stable, and that solutions either tend to zero or to infinity as time tends to infinity. In the case when the perturbation is integrable, the zero solution is globally asymptotically stable. If the perturbation is non–integrable, and tends to zero faster than a critical rate which depends on the strength of the restoring force, then solutions are globally stable. However, if the perturbation tends to zero more slowly than this critical rate, and the initial condition is sufficiently large, the solution tends to infinity. Moreover, for every initial condition, there exists a perturbation which tends to zero more slowly than the critical rate, for which the solution once again escapes to infinity. Some extensions to general scalar equations as well as to finite– dimensional systems are also presented, as well as global convergence results using Liapunov techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

On asymptotic stability of Prabhakar fractional differential systems

In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given. 

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

On asymptotic stability of Weber fractional differential systems

In this article, we introduce the fractional differential systems in the sense of the Weber fractional derivatives and study the asymptotic stability of these systems. We present the stability regions and then compare the stability regions of fractional differential systems with the Riemann-Liouville and Weber fractional derivatives.

متن کامل

Study on stability analysis of distributed order fractional differential equations with a new approach

The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012